MathWit Club Public tutorial Sample Questions 1

Exercise 0.1. Decomposing a matrix, answer is given. Can you fill in the steps?

$$
\left(\begin{array}{cccc}
18 & -51 & 27 & -15 \\
8 & -24 & 14 & -8 \\
15 & -48 & 28 & -15 \\
15 & -47 & 25 & -12
\end{array}\right)=\left(\begin{array}{cccc}
3 & 1 & 0 & 3 \\
1 & 0 & 1 & 2 \\
2 & 0 & 3 & 3 \\
3 & 1 & 2 & 2
\end{array}\right) \cdot\left(\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
3 & -9 & 5 & -3 \\
-5 & 15 & -9 & 6 \\
-1 & 2 & -1 & 1 \\
-1 & 4 & -2 & 1
\end{array}\right)
$$

When solving an equation, sometimes we need to eliminate root(s) that are created by some operations. The following is an example that contains an error.

Example 0.2. Solve a simple equation $x+\sqrt{x}=2$.

$$
x+\sqrt{x}=2 \Leftrightarrow \sqrt{x}=2-x \Leftrightarrow x=(2-x)^{2} \Leftrightarrow x^{2}-5 x+4=0
$$

Solve the quadratic equation on the right, we have $x=1$ or $x=4$.
As you can see, $x=4$ is not a root for the original equation. The mistake is the second \Leftrightarrow (if and only if). From left, it can derive the right, but not the other way around. If $2-x$ is negative, the equation does not make sense, since square root, without a sign, is supposed to be positive (a convention). Unfortunately, $x=4$ will make $2-x$ negative, thus we need to eliminate this extra value, so $x=1$ is the only solution.

Exercise 0.3. Discuss the range of the function and find the number of local maximums.

$$
f(x, y)=|\sin 2 x \cos 2 y|
$$

Example 0.4. Find the oblique asymptote of

$$
f(x)=\frac{4 x^{3}-6 x^{2}}{4 x^{2}+2 x+3}
$$

Solution 1: Suppose the asymptote is $y=m x+b$, then (we assume $+\infty$, for limit to $-\infty$ we will have the same result).

$$
\lim _{x \rightarrow \infty}\left(\frac{4 x^{3}-6 x^{2}}{4 x^{2}+2 x+3}-m x-b\right)=\lim _{x \rightarrow \infty} \frac{(4-4 m) x^{3}-(6+2 m+4 b) x^{2}-(3 m+2 b) x-3 b}{4 x^{2}+2 x+3}
$$

The above limit should be zero, hence $4-4 m=0 \Rightarrow m=1$ and $6+2 m+4 b=0 \Rightarrow b=-2$. So the asymptote is

$$
y=x-2 .
$$

Solution 2: First find the slope of asymptote:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{y}{x}=\lim _{x \rightarrow \infty} \frac{4 x^{2}-6 x}{4 x^{2}+2 x+3}=1 \tag{1}
\end{equation*}
$$

The above is justified because

$$
\lim _{x \rightarrow \infty}\left(\frac{4 x^{3}-6 x^{2}}{4 x^{2}+2 x+3}-m x-b\right)=0
$$

Divide the following expression

$$
\frac{4 x^{3}-6 x^{2}}{4 x^{2}+2 x+3}-m x-b
$$

by x, then take limit $x \rightarrow \infty$ and then use the previous limit, we can see (1) is true.
So the asymptote is of the form $y=x+b$.

$$
\lim _{x \rightarrow \infty}\left(\frac{4 x^{3}-6 x^{2}}{4 x^{2}+2 x+3}-x\right)=\lim _{x \rightarrow \infty} \frac{-8 x^{2}-3 x}{4 x^{2}+2 x+3}=-2 \Rightarrow b=-2 .
$$

Thus we get the same result as solution 1.8

