MathWit Club Public tutorial Sample Questions 1

Exercise 0.1. Decomposing a matrix, answer is given. Can you fill in the steps?

1	′ 18	-51	27	-15)	1	(3	1	0	3		(4	0	0	0)		(3	-9	5	-3
	8	-24	14	-8	=	1	0	1	2		0	3	0	0	. (-5	15	-9	6
I	15	-48	28	-15		2	0	3	3		0	0	2	0		-1	2	-1	1
	15	-47	25	-12 /		\ 3	1	2	2 /		0	0	0	1 /		\ -1	4	-2	1 /

When solving an equation, sometimes we need to eliminate root(s) that are created by some operations. The following is an example that contains an error.

Example 0.2. Solve a simple equation $x + \sqrt{x} = 2$.

 $x + \sqrt{x} = 2 \Leftrightarrow \sqrt{x} = 2 - x \Leftrightarrow x = (2 - x)^2 \Leftrightarrow x^2 - 5x + 4 = 0$

Solve the quadratic equation on the right, we have x = 1 or x = 4.

As you can see, x = 4 is not a root for the original equation. The mistake is the second \Leftrightarrow (if and only if). From left, it can derive the right, but not the other way around. If 2 - x is negative, the equation does not make sense, since square root, without a sign, is supposed to be positive (a convention). Unfortunately, x = 4 will make 2 - x negative, thus we need to eliminate this extra value, so x = 1 is the only solution.

Exercise 0.3. Discuss the range of the function and find the number of local maximums.

 $f(x,y) = |\sin 2x \cos 2y|$

Example 0.4. Find the oblique asymptote of

$$f(x) = \frac{4x^3 - 6x^2}{4x^2 + 2x + 3}.$$

http://www.mathwit.com

Request a tutor or get help online!

Solution 1: Suppose the asymptote is y = mx + b, then (we assume $+\infty$, for limit to $-\infty$ we will have the same result).

$$\lim_{x \to \infty} \left(\frac{4x^3 - 6x^2}{4x^2 + 2x + 3} - mx - b \right) = \lim_{x \to \infty} \frac{(4 - 4m)x^3 - (6 + 2m + 4b)x^2 - (3m + 2b)x - 3b}{4x^2 + 2x + 3}$$

The above limit should be zero, hence $4 - 4m = 0 \Rightarrow m = 1$ and $6 + 2m + 4b = 0 \Rightarrow b = -2$. So the asymptote is

y = x - 2.

Solution 2: First find the slope of asymptote:

$$\lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{4x^2 - 6x}{4x^2 + 2x + 3} = 1.$$
 (1)

The above is justified because

$$\lim_{x \to \infty} \left(\frac{4x^3 - 6x^2}{4x^2 + 2x + 3} - mx - b \right) = 0$$

Divide the following expression

$$\frac{4x^3 - 6x^2}{4x^2 + 2x + 3} - mx - b$$

by x, then take limit $x \to \infty$ and then use the previous limit, we can see (1) is true.

So the asymptote is of the form y = x + b.

$$\lim_{x \to \infty} \left(\frac{4x^3 - 6x^2}{4x^2 + 2x + 3} - x \right) = \lim_{x \to \infty} \frac{-8x^2 - 3x}{4x^2 + 2x + 3} = -2 \quad \Rightarrow \quad b = -2.$$

Thus we get the same result as solution $1.\heartsuit$

http://www.mathwit.com

Request a tutor or get help online!